A novel motor fault diagnosis using only motor current signature is developed using a frequency occurrence plot-based convolutional neural network (FOP-CNN). In this study, a healthy motor and four identical motors with synthetically applied fault conditions—bearing axis deviation, stator coil inter-turn short circuiting, a broken rotor strip, and outer bearing ring damage—are tested. A set of 150 three-second sampling stator current signals from each motor fault condition are taken under five artificial coupling loads (0, 25%, 50%, 75% and 100%). The sampling signals are collected and processed into frequency occurrence plots (FOPs) which later serve as CNN inputs. This is done first by transforming the time series signals into its frequency spectra then convert these into two-dimensional FOPs. Fivefold stratified sampling cross-validation is performed. When motor load variations are considered as input labels, FOP-CNN predicts motor fault conditions with a 92.37% classification accuracy. It precisely classifies and recalls bearing axis deviation fault and healthy conditions with 99.92% and 96.13% f-scores, respectively. When motor loading variations are not used as input data labels, FOP-CNN still satisfactorily predicts motor condition with an 80.25% overall accuracy. FOP-CNN serves as a new feature extraction technique for time series input signals such as vibration sensors, thermocouples, and acoustics.